Alternating minimization and Boltzmann machine learning

نویسنده

  • William J. Byrne
چکیده

Training a Boltzmann machine with hidden units is appropriately treated in information geometry using the information divergence and the technique of alternating minimization. The resulting algorithm is shown to be closely related to gradient descent Boltzmann machine learning rules, and the close relationship of both to the EM algorithm is described. An iterative proportional fitting procedure for training machines without hidden units is described and incorporated into the alternating minimization algorithm.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Hybrid Algorithm based on Deep Learning and Restricted Boltzmann Machine for Car Semantic Segmentation from Unmanned Aerial Vehicles (UAVs)-based Thermal Infrared Images

Nowadays, ground vehicle monitoring (GVM) is one of the areas of application in the intelligent traffic control system using image processing methods. In this context, the use of unmanned aerial vehicles based on thermal infrared (UAV-TIR) images is one of the optimal options for GVM due to the suitable spatial resolution, cost-effective and low volume of images. The methods that have been prop...

متن کامل

L1-regularized Boltzmann machine learning using majorizer minimization

We propose an inference method to estimate sparse interactions and biases according to Boltzmann machine learning. The basis of this method is L1 regularization, which is often used in compressed sensing, a technique for reconstructing sparse input signals from undersampled outputs. L1 regularization impedes the simple application of the gradient method, which optimizes the cost function that l...

متن کامل

Provable Matrix Sensing using Alternating Minimization

Alternating minimization has emerged as a popular heuristic for large-scale machine learning problems involving low-rank matrices. However, there have been few (if any) theoretical guarantees on its performance. In this work, we investigate the natural alternating minimization algorithm for the popular matrix sensing problem first formulated in [RFP07]; this problem asks for the recovery of an ...

متن کامل

Deep Learning of Invariant Spatio-Temporal Features from Video

We present a novel hierarchical and distributed model for learning invariant spatiotemporal features from video. Our approach builds on previous deep learning methods and uses the Convolutional Restricted Boltzmann machine (CRBM) as a building block. Our model, called the Space-Time Deep Belief Network (STDBN), aggregates over both space and time in an alternating way so that higher layers capt...

متن کامل

Global optimization of factor models and dictionary learning using alternating minimization

Learning new representations in machine learning is often tackled using a factorization of the data. For many such problems, including sparse coding and matrix completion, learning these factorizations can be difficult, in terms of efficiency and to guarantee that the solution is a global minimum. Recently, a general class of objectives have been introduced, called induced regularized factor mo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • IEEE transactions on neural networks

دوره 3 4  شماره 

صفحات  -

تاریخ انتشار 1992